Cluster chemistry

LXVII *. Reactions of some $\mathrm{Fe}-\mathrm{Ir}$ clusters. Crystal structures of $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3}$

Michael I. Bruce, George A. Koutsantonis and Edward R.T. Tiekink
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

(Received October 5th, 1990)

Abstract

Isomeric hydrido-vinylidene and -alkyne complexes $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{X}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{CCHPh}$, $\left.\mathrm{HC}_{2} \mathrm{Ph}\right)$ were obtained from $\mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ and H_{2} or $\mathrm{H}^{-} / \mathrm{H}^{+}$. The X-ray structure of the vinylidene complex is reported. Cluster complexes containing gold, iron and iridium were obtained The mono-gold species $\mathrm{AuFe} e_{2} \operatorname{Ir}\left(\mu_{3}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}$ and the tri-gold cluster $\mathrm{Au}_{3} \mathrm{Fe} \operatorname{Ir}\left(\mathrm{C}_{2} \mathrm{HPh}\right)$ $(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{4}$ were identified spectroscopically, whereas the digold complex $\mathrm{Au}_{2} \mathrm{Fe}_{2} \mathrm{Ir}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)$ $(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3}$ was shown crystallographically to have an unusual structure in which one of the gold atoms bridges the acetylide C_{α} and the Ir atom. The rhodium analogue was also obtained.

Introduction

We have recently described the synthesis and characterisation of several mixedmetal clusters containing iron and iridium containing acetylide ligands [1]. In the course of developing their chemistry, we have compared the protonation and auration reactions of $\mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(1)$. The former yielded isomeric hydrido-alkyne and -vinylidene complexcs. The aurating agents we have used included $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ and $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]^{+}$, and a combination of the latter with [ppn] ${ }^{+}$salts, which we have found to be an excellent source of the $\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ group. This chemistry is described below, and amplifies in part a recent communication [2]. The complex $\left[\mathrm{PPh}_{4}\right]\left[\mathrm{AuFe}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{12}\left(\mathrm{PPh}_{3}\right)\right]$, obtained from $\left[\mathrm{Fe}_{2} \mathrm{Ir}_{2}-\right.$ $\left.(\mathrm{CO})_{12}\right]^{2-}$ and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$, has been described [3].

[^0]
Results and discussion

Reactivity of $\mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (1)
(a) With dihydrogen. Reactions between 1 and H_{2} in cyclohexane afforded the hydrido-vinylidene cluster $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (2) (Scheme 1), which is described in more detail below, and an unidentified brown complex which was obtained as the major product from a complex mixture.
(b) H^{-} / H^{+}. While the reaction between 1 and H_{2} is complex, the two-stage addition of H^{-}(as $\left.\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]\right)$ and H^{+}gave two well-defined products, 2 and the isomeric hydrido-alkyne derivative $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (3). These two complexes were also obtained by protonation of the anionic species formed by sodium amalgam-reduction of $\mathbf{1}$ in tetrahydrofuran. Both complexes were formulated from elemental microanalyses and their spectroscopic properties; the molecular structure of 2 was determined unambiguously by an X-ray diffraction study.

Structure of $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (2). The structure of 2 is shown in Fig. 1; significant bond distances and angles are given in Table 1. In the $\mathrm{Fe}_{2} \mathrm{Ir}$ core, one $\mathrm{Ir}-\mathrm{Fe}$ distance $[\mathrm{Fe}(1)-\operatorname{Ir} 2.705(1) \AA$] is comparable to those in 1 [2]; the other [$\mathrm{Fe}(2)-\operatorname{Ir} 2.656(1) \AA$] is considerably shorter. The $\mathrm{Fe}-\mathrm{Fe}$ separation shows a significant lengthening compared with 1 (ca. $0.11 \AA$), suggesting that the hydride, which was not directly located, bridges this bond; this is supported by the 'splayedout' nature of $\mathrm{CO}(5)$ and $\mathrm{CO}(6)$ about this bond. The PPh_{3} and eight CO ligands are distributed as in the precursor 1. The $\operatorname{Ir}-\mathrm{P}(1)$ distance $[2.362(1) \AA$] is unexceptional and similar to that in $\mathbf{1}[2.351(2) \AA]$. The μ_{3}-phenylvinylidene ligand interacts in a distorted η^{2}-fashion with $\mathrm{Fe}(2)[\mathrm{C}(9)-\mathrm{Fe}(2), \mathrm{C}(10)-\mathrm{Fe}(2) 2.806(4), 2.282(5) \AA$, respectively] while $\mathrm{C}(9)$ is attached to both $\mathrm{Fe}(1)$ [1.900(5) \AA] and $\operatorname{Ir}[2.034(5) \AA$].

(1)

(3)

Scheme 1.

Fig. 1. Molecular structure and crystallographic numbering scheme for $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3^{-}}\right.$ $\mathrm{CCHPh})(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (2).

This type of structure in which the least electron-rich metal atom interacts with the $\mathrm{C}=\mathrm{C}$ double bond, follows the pattern observed with other mixed-metal systems such as $\mathrm{Co}_{2} \mathrm{Ru}\left(\mu_{3}-\mathrm{CCHPh}\right)(\mathrm{CO})_{9}$ [4]. The $\mathrm{C}(9)-\mathrm{C}(10)$ distance [1.406(7) \AA] has appreciably lengthened from that of the acetylide in 1.

The spectroscopic properties in solution are consistent with the solid-state structure. The IR spectrum contains an eight-band terminal $\nu(\mathrm{CO})$ pattern. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the vinylidene proton is found at $\delta 6.93$, this signal is relatively broad, perhaps as a result of a small unresolved coupling to ${ }^{31} \mathrm{P}$. The metal-bonded proton resonance is at $\delta-17.9$ is coupled to both the vinylidene CH and the ${ }^{31} \mathrm{P}$ nucleus.

Table 1
Significant bond distances (\AA) and angles (deg) in $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}\right.$ - CCHPh$)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (2)

$\mathrm{Ir}-\mathrm{Fe}(1)$	$2.705(1)$	$\mathrm{Ir}-\mathrm{Fe}(2)$	$2.656(1)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.591(1)$	$\mathrm{Ir}-\mathrm{P}(1)$	$2.362(1)$
$\mathrm{Ir}-\mathrm{C}(9)$	$2.034(5)$	$\mathrm{Fe}(1)-\mathrm{C}(9)$	$1.900(5)$
$\mathrm{Fe}(2)-\mathrm{C}(9)$	$2.006(4)$	$\mathrm{Fe}(2)-\mathrm{C}(10)$	$2.282(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.406(7)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.492(6)$
$\mathrm{Fe}(1)-\mathrm{Ir}-\mathrm{Fe}(2)$	$57.8(1)$	$\mathrm{Ir}-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$60.2(1)$
$\mathrm{Ir}-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$62.0(1)$	$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{Fe}(1)$	$106.4(1)$
$\mathrm{P}(1)-\mathrm{Ir}-\mathrm{Fe}(2)$	$148.9(1)$	$\mathrm{Ir}-\mathrm{C}(9)-\mathrm{Fe}(1)$	$86.8(2)$
$\mathrm{Ir}-\mathrm{C}(9)-\mathrm{Fe}(2)$	$82.2(2)$	$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{Fe}(2)$	$83.0(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Fe}(2)$	$60.5(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$126.3(4)$
$\mathrm{Fe}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.5(3)$		

The ${ }^{13} \mathrm{C}$ NMR spectrum contained signals between $\delta 126-130$ assigned to the phenyl protons. Two peaks at $\delta 101.7$ and 145.5 were assigned to C_{α} and C_{β}, respectively, of the vinylidene moiety. A sharp singlet at $\delta 5.1$ in the ${ }^{31} \mathrm{P}$ NMR spectrum was assigned to $\mathrm{Ir}-\mathrm{PPh}_{3}$. The FAB mass spectrum showed a molecular ion at $m / z 894$ which fragmented by successive loss of eight CO ligands.

Spectroscopic data confirmed that complex 3 was also related to $\mathbf{1}$ by the addition of two hydrogens. The ${ }^{1} \mathrm{H}$ NMR spectrum contained a high field doublet at $\delta-23.48[J(\mathrm{PH}) 12 \mathrm{~Hz}]$ from a bridging hydride ligand. A characteristic low-field doublet at $\delta 7.81[J(\mathrm{PH}) 5 \mathrm{~Hz}]$ was found for the alkyne CH proton. The singlet at $\delta 112.5$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was assigned to the $=\mathrm{CH}$ carbon with the aid of off-resonance decoupling; the resonance of the other carbon was in the aromatic region and could not be identified. The CO ligands resonated at $\delta 152.8$ and 171.2 ($\mathrm{Ir}-\mathrm{CO}$) and at δ ca. 210 ($\mathrm{Fe}-\mathrm{CO}$). The FAB mass spectrum contained a molecular ion at $m / z 894$ and fragment ions formed by stepwise loss of eight $C O$ ligands. These data are consistent with the formulation of 3 as the μ_{3}-alkyne complex, isomeric with 2. Again, the proposed structure is that in which the formal π-bond is directed towards the least electron-rich metal atom, in this case one of the Fe atoms.

The formation of 3 probably occurs by addition of H^{-}to C_{α} of the phenylacetylide ligand in $\mathbf{1}$ to give an anionic intermediate, followed by addition of a proton to the metal framework. The ready 1,2-hydrogen shift which results in the isomerisation of 3 to 2 is a well-established reaction [4], and occurs almost quantitatively on heating 3 are refluxing toluene for 90 min .

Vahrenkamp and coworkers [4] have established the geometric changes occurring in the alkyne-vinylidene transformation on $\mathrm{Co}_{2} \mathrm{Ru}$ systems. The CC bond gradually inclines with respect to the metal plane (alkyne, 1 ; acetylide, 19 ; vinylidene 50°). In the present work, we find the inclinations of the acetylide [1] and vinylidene ligands to be 18.6 and 65.5°, respectively, to the mean $\mathrm{Fe}_{2} \mathrm{Ir}$ plane. These changes are consistent with the results of a theoretical study by Silvestre and Hoffmann [5].
(c) Auration. As mentioned above, the reaction 1 with $\mathrm{Na} / \mathrm{Hg}$ or $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ is believed to generate a hydrido-anion. Tetrahydrofuran solutions of this anion, generated using sodium amalgam, react readily with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ to give dark red solutions, from which the major product, $\mathrm{AuFe} 2_{2} \operatorname{Ir}\left(\mu_{3}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}, 4$, was isolated by TLC. A small amount of the digold cluster $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{2}$ (5) (see below) was also obtained.

Complex 4 was identified from microanalytical and spectroscopic data. The solution IR spectrum contained six terminal $\nu(\mathrm{CO})$ bands. The ${ }^{1} \mathrm{H}$ NMR spectrum contained resonances at $\delta 7.14-7.62$, assigned to the phenyl groups. A characteristic low field signal found at $\delta 9.18$ [d, $J(\mathrm{PH}) 13 \mathrm{~Hz}, 1 \mathrm{H}]$ was assigned to the CH proton of the μ_{3}-alkyne (cf. the similar resonance in $\mathrm{CO}_{2} \mathrm{Ru}\left(\mu_{3}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{9}$ at $\delta 9.53$ [4]). The multiplet between $\delta 126.0-135.0$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, assigned to the phenyl groups, and probably including C_{β} of the alkyne, and the signal at $\delta 102.5$ assigned to C_{α} of the alkyne, were the only resonances observed. The FAB mass spectrum contained a weak pseudo-molecular ion at $m / z 1353$ ($[M+\mathrm{H}]^{+}$) which decomposed by the stepwise loss of eight CO groups and an $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ fragment. The gold-containing ions at $m / z 721$ and $m / z 459$ were assigned to $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$, respectively.

X-ray quality crystals of 4 could not be obtained, so that the precise position of the $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group has not been determined; the usual isolobal equivalence

(1)

(4)

(5) $\mathrm{M}=\mathrm{Ir}$
(7) $M=R h$
$\mathrm{H} \leftrightarrows \mathrm{Au}\left(\mathrm{PR}_{3}\right)$ points to its bridging one edge of the $\mathrm{Fe}_{2} \mathrm{Ir}$ triangle rather than adopting a μ_{3} (capping) position.

Complex 4 was also obtained from the reaction of the anion of 1 , generated using either $\mathrm{Na} / \mathrm{Hg}$ or $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right.$] in THF , and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$; small amounts of 5 were also obtained. This observation supports the premise that initial nucleophilic attack of H^{-}occurs at C_{α} of the acetylide ligand in 1 . A similar reaction with $\mathrm{Fe}_{3}\left(\mu_{3}-\eta^{2}-\mathrm{CN}^{t} \mathrm{Bu}\right)(\mathrm{CO})$, has been described [6]. In this case, the cluster-bound isocyanide was found to add H^{-}to give $\left[\mathrm{Fe}_{3}\left(\mu_{3}-\eta^{2}-\mathrm{HCN}^{t} \mathrm{Bu}\right)(\mathrm{CO})_{9}\right]^{-}$, which could be protonated or aurated to give $\mathrm{Fe}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{3}-\mathrm{HCN}^{t} \mathrm{Bu}\right)(\mathrm{CO})_{9}$ and $\mathrm{AuFe}_{3}\left(\mu_{3}-\eta^{2}-\right.$ $\left.\mathrm{HCN}^{t} \mathrm{Bu}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$, respectively.

The reaction of 1 with $\mathrm{K}\left[\mathrm{HB}(\mathrm{CHMeEt})_{3}\right]$ followed by addition of the trigoldoxonium reagent gave a number of additional products, one of which was identified as a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate of $\mathrm{Au}_{3} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mathrm{C}_{2} \mathrm{HPh}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{4}(6)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 contains resonances between $\delta 7.0$ and $7.5(\mathrm{Ph})$ and a broad unresolved signal at $\delta 7.05$, which we assign to a vinylidene proton (cf. $\delta 6.89$ in $\mathrm{Co}_{2} \mathrm{Ru}\left(\mu_{3^{-}}\right.$ $\mathrm{CCHPh})(\mathrm{CO})_{9}$ [4]). The FAB mass spectrum of 6 contained a molecular ion at m / z 2242 and ions related to this by successive loss of six CO groups and loss of PPh_{3}. Gold-containing ions were found at $m / z 1377,1115$ and 721, assigned to $\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+},\left[\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$, respectively. It is not surprising that a tris-gold adduct has been found given the nature of the aurating reagent used but the disposition of the three $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ units in 6, expected to form either an open or closed Au_{3} array, is not known.

We have shown earlier [2] that reactions of $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ with appropriate substrates, carried out in the presence of $[\mathrm{ppn}][\mathrm{X}]\left(\mathrm{X}=\mathrm{OAc}, \mathrm{Co}(\mathrm{CO})_{4}\right.$, for example), often result in the introduction of the $A u_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ligand (or two $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ units). Complex 5 was obtained in this way from 1 as orange crystals in 83% yield. The rhodium analogue 7 was prepared similarly. The complex

Fig. 2. Molecular structure and crystallographic numbering scheme for $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3}$ (5).
$\mathrm{AuCo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)$ was also isolated from the reaction products. The formulations of 5 and 7 were indicated by microanalytical and FAB MS data, and the molecular structure of 5 was determined by X-ray methods.

Structure of $\mathrm{Au}_{2} \mathrm{Fe}_{2} \mathrm{Ir}\left(\mu_{4}-\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{CO}_{7}\right)_{7}\left(\mathrm{PPh}_{3}\right)_{3}$ (5). The molecular structure of $\mathbf{5}$ is shown in Fig. 2 and Table 2 collects significant bond distances and angles.

Table 2
Selected interatomic distances (\AA) and angles (deg) in $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3}(5)$

$\mathrm{Au}(1)-\mathrm{Au}(2)$	$2.847(1)$	$\mathrm{Au}(1)-\operatorname{Ir}(1)$	$2.633(1)$
$\mathrm{Au}(2)-\mathrm{Ir}(1)$	$2.726(1)$	$\mathrm{Ir}(1)-\mathrm{Fe}(1)$	$2.709(3)$
$\mathrm{Ir}(1)-\mathrm{Fe}(2)$	$2.744(4)$	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.501(5)$
$\mathrm{Ir}(1)-\mathrm{P}(1)$	$2.287(6)$	$\mathrm{Au}(1)-\mathrm{P}(3)$	$2.269(6)$
$\mathrm{Au}(2)-\mathrm{P}(2)$	$2.269(6)$	$\mathrm{Au}(2)-\mathrm{C}(8)$	$2.39(2)$
$\mathrm{Ir}(1)-\mathrm{C}(8)$	$1.96(2)$	$\mathrm{Fe}(1)-\mathrm{C}(8)$	$2.07(2)$
$\mathrm{Fe}(2)-\mathrm{C}(8)$	$2.08(2)$	$\mathrm{Fe}(1)-\mathrm{C}(9)$	$2.14(2)$
$\mathrm{Fe}(2)-\mathrm{C}(9)$	$2.06(2)$	$\mathrm{C}(8) \mathrm{C}(9)$	$1.34(3)$
$\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{P}(3)$	$132.7(2)$	$\mathrm{Au}(1)-\operatorname{Ir}(1)-\mathrm{Fe}(1)$	$90.3(1)$
$\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{Ir}(1)$	$59.5(1)$	$\mathrm{Au}(2)-\operatorname{Ir}(1)-\mathrm{Fe}(2)$	$107.1(1)$
$\operatorname{Ir}(1)-\mathrm{Au}(1)-\mathrm{P}(3)$	$166.0(2)$	$\mathrm{Au}(2)-\operatorname{lr}(1)-\mathrm{Fe}(1)$	$86.5(1)$
$\mathrm{Au}(1)-\mathrm{Au}(2)-\mathrm{Ir}(1)$	$56.3(1)$	$\mathrm{Au}(2)-\mathrm{C}(8)-\mathrm{Ir}(1)$	$77.0(7)$
$\mathrm{Au}(1)-\mathrm{Au}(2)-\mathrm{C}(8)$	$91.2(6)$	$\mathrm{Au}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$129(2)$
$\mathrm{Ir}(1)-\mathrm{Au}(2)-\mathrm{P}(2)$	$170.0(2)$	$\mathrm{Ir}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$151(2)$
$\mathrm{Au}(1)-\mathrm{Ir}(1)-\mathrm{Fe}(2)$	$144.8(1)$	$\mathrm{Au}(1)-\mathrm{Au}(2)-\mathrm{P}(2)$	$122.4(1)$
$\mathrm{Au}(1)-\mathrm{Ir}(1)-\mathrm{Au}(2)$	$64.1(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)$	$139(2)$

(8)

The structure of 5 is closely related to that of $\mathbf{1}$, the major difference being the coordination of a $\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ unit to the Ir atom with an additional interaction between $\mathrm{Au}(2)$ and $\mathrm{C}(8)$ of the acetylide ligand. The cluster core comprises a spiro or 'bow-tie' arrangement of the five metal atoms with the two halves of the tie defined by the $\operatorname{Ir}(1) \mathrm{Fe}(1) \mathrm{Fe}(2)$ and $\operatorname{Ir}(1) \mathrm{Au}(1) \mathrm{Au}(2)$ triangles. The dihedral angle between the planes is 86.0°. The $\mathrm{Ir}-\mathrm{Fe}[2.709(3), 2.744(4) \AA], \mathrm{Fe}-\mathrm{Fe}[2.501(5) \AA]$ and $\operatorname{Ir}-\mathrm{P}(1)[2.287(6) \AA]$ distances are all comparable to those found in complex 1. The $\mathrm{Au}-\mathrm{Ir}$ distances $[\mathrm{Ir}-\mathrm{Au}(1) 2.633(1), \mathrm{Ir}-\mathrm{Au}(2) 2.726(1) \AA$) may be compared with the sum of the metallic radii $(2.794 \AA)$ and the $\mathrm{Ir}-\mathrm{Au}(1)$ interaction falls within the range found for the analogous distance in other mixed-metal clusters (2.593$2.675 \AA$) [7]. In the anion [$\left.\mathrm{AuFe}_{2} \mathrm{Ir}_{2}(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right]^{-}$, the $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group caps an FeIr_{2} face, with $\mathrm{Au}-\mathrm{Fe} 2.806(1)$, $\mathrm{Au}-\mathrm{Ir} 2.797(1)$ and 2.829(1), and $\mathrm{Fe}-\mathrm{Ir}$ $2.686(1)$ and $2.776(1) \AA$ [3]. The coordination mode of the acetylide ligand in 3 can be described as distorted $\mu_{4}-\eta^{2}-(\perp)[8]$ with the angle between the $\mathrm{C} \equiv \mathrm{C}$ axis and the bridged $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ vector being ca. 103°. The $\mathrm{Ir}-\mathrm{C}_{\alpha}[1.957(23) \AA$ and $\mathrm{C} \equiv \mathrm{C}$ distances $\left[1.340(31) \AA\right.$ A fall within the values found for $\mu_{4}-\eta^{2}-(\perp)$ acetylide ligands [8] and are comparable to those in 1.

An interesting feature of the structure of 5 is the $\mathrm{Au}(2)-\mathrm{C}(8)$ interaction [2.387(22) \AA]. Gold-carbon interactions have been noted previously in the complexes [($\left.\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ [9], [$\mathrm{AuW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ -$\left.4)_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{PF}_{6}\right] \quad[10]$ and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoMn}\left(\mu-\mathrm{PPh}_{2}\right)\left\{\mu-\sigma: \eta^{4}-\mathrm{CH}(\mathrm{Me})-\right.\right.$ $\left.\mathrm{CHCHAu}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right\}(\mathrm{CO})_{4}$] (8) [11] where $\mathrm{Au}-\mathrm{C}$ contacts of 2.16(3), 2.12(2) and $2.19(1) \AA$, respectively, were found. The latter complex is possibly the closest analogue to 5 and contains an $\eta^{3}-\mathrm{CHMeCHCHAu}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$ ligand bridging the $\mathrm{Mo}-\mathrm{Mn}$ bond. The $\mathrm{Au}\left(\mathrm{PR}_{3}\right)$ unit is considered to replace the agostic hydrogen found in the $\eta^{3}-\mathrm{CHMeCHCH}=2$ analogue and to be involved in a similar type of bonding. The longer distance in 5 might be a result of steric interaction between the PPh_{3} ligand on Ir , which is bonded cis to C_{α} of the acetylide ligands, and the $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group interacting with C_{α}.

In 5, the seven CO groups are distributed three to each iron and one to the iridium. Although the least hindered site of attack on the iridium atom in 1 is the position occupied by $\mathrm{CO}(2)$, which is trans to C_{α} of the acetylide ligand, comparison of the two structures suggests that the $\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ unit occupies the position of $\mathrm{CO}(1)$, thus allowing interaction of the digold unit with C_{α}.

Spectroscopic data obtained for 5 and 7 were in accord with the determined structure. Their IR spectra were similar and contained only terminal $\nu(\mathrm{CO})$ bands. Multiplets, assigned to phenyl group resonances, were the only signals observed in their ${ }^{1} \mathrm{H}$ NMR spectra; the compounds proved too insoluble to obtain ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 contained two broad singlets at $\delta 40.8$ and 47.8 which were assigned to inequivalent $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ groups; a sharp doublet at $\delta 52.6$ in the spectrum of 7 was assigned to $\mathrm{Rh}-\mathrm{PPh}_{3}$ on the basis of the observed 141 Hz coupling to ${ }^{103} \mathrm{Rh}$. By analogy the broad singlets at $\delta 42.8$ and 47.6 and the sharp singlet at $\delta 30.6$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 were assigned to $\mathrm{Au}-\mathrm{PPh}_{3}$ and $\mathrm{Ir}-\mathrm{PPh}_{3}$, respectively. The FAB mass spectra of 5 and 7 contained weak pseudo-molecular ions at $m / z 1794$ and $m / z 1694$, respectively, corresponding to $[M+\mathrm{H}]^{+}$and $[M+2 \mathrm{H}]^{+}$, respectively. These ions decomposed by successive loss of seven CO groups and an $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group. Both spectra contained strong ions at $m / z 721$ and 459 assigned to $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$, respectively. An ion corresponding to $\left[\left\{\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right\} \mathrm{H}\right]^{+}$was also found in the FAB spectrum of 5 at $\mathrm{m} / \mathrm{z} 919$.

Various alternative routes to 5 were investigated. Little reaction was found between complex 1 and the trigold-oxonium reagent alone, so that direct addition of $\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}$ or stepwise addition of three $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ groups to give 6 can probably be ruled out. The orange solution obtained from the reaction of the trigold-oxonium salt with [ppn][Co(CO) ${ }_{4}$] in THF also did not react with 1 to form 5. For preparative purposes it was found that treatment of 1 with [ppn$]\left[\mathrm{Co}(\mathrm{CO})_{4}\right] /$ $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ was the best synthetic route (83\%). Recently it has been found that $[\mathrm{ppn}] \mathrm{Cl}$ or $[\mathrm{ppn}][\mathrm{OAc}] /\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ achieves the same results giving in the former case $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ as a side product which can be recycled [12]. At present we favour initial formation of a trigold adduct of 1 , perhaps via an intermediate activated by the [ppn] ${ }^{\text {' }}$ counter-anion, which is then degraded by the added nucleophile with loss of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$.

The isolobal relationship between $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ and H is of limited use in predicting structures of clusters containing more than one gold atom [13-15]. This is because of the propensity of gold to form $\mathrm{Au}-\mathrm{Au}$ bonds. However, as we have pointed out previously, to a first approximation the digold unit $\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ is isolobal with H_{2}. Complex 5 may model the first stage of the reaction of dihydrogen with complex 1. The formal addition of $\mathrm{H}_{2}\left(\equiv \mathrm{H}^{-} / \mathrm{H}^{+}\right)$to $\mathbf{1}$ was shown above to give initially the hydrido-alkyne cluster 3 which rearranged thermally to the hydrido-vinylidene cluster 2. Similarly, hydrogenation of 1 gave 2 which we believe derives from 3 formed initially.

Formal substitution of a CO group in 1 by $\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ results in the formation of 5 (Scheme 3). Thus approach of the H_{2} molecule with oxidative addition to the Ir centre is followed by migration of one H atom to bridge the $\mathrm{Ir}-\mathrm{Fe}$ bond, and of the second to C_{α}. Although addition of H_{2} to 1 gave the vinylidene 2, the reaction conditions favour the isomerisation of the expected alkyne; addition of $\mathrm{H}^{-} / \mathrm{H}^{+}$ gave the latter, which on heating was converted to 2 . These reactions are summarised in Scheme 2.

A situation can be envisaged in which cleavage of the $A u-A u$ bond and one of the Ir-Au bonds could give rise to structures \mathbf{A} and \mathbf{B} which are isolobal with $\mathbf{3}$ and 2, respectively. However, no evidence has been found for the formation of complexes of this type in the pyrolysis or hydrogenation of complex 5 . No doubt this is

Scheme 2.
due to the tendency for formation and preservation of the $\mathrm{Au}-\mathrm{Au}$ bond in 5. A simple electron count requires the acetylide ligand to contribute 5e and the digold unit $2 e$ to give an electron-precise count of 48 electrons for this cluster. The conversion of the acetylide ligand into the 4 e donor depicted in \mathbf{A} or \mathbf{B} requires the addition of two electrons; this can be achieved by the addition of CO .

The principle which seems to govern construction of multi- $\mathrm{Au}\left(\mathrm{PR}_{3}\right)$-containing clusters is that the first unit occupies the position of H in the corresponding hydride cluster, if steric effects allow. Successive $\mathrm{Au}\left(\mathrm{PR}_{3}\right)$ units then add to the least hindered triangular faces next to existing gold atoms. This leads to a compact arrangement of face-sharing tetrahedra with as many adjacent gold atoms as possible $[7,14,15]$. Thus, it is likely that complex 6 contains a $\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}$ ligand attached to the $\mathrm{Fe}_{2} \mathrm{Ir}$ triangle on the opposite face to that occupied by the hydrocarbyl ligand.

Conclusions

Reduction of the bridging acetylide ligand in 1 was achieved by the stepwise addition of $\mathrm{H}^{-} / \mathrm{H}^{+}$to give the isomeric hydrido-alkyne and hydrido-vinylidene clusters, $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8^{-}}$ $\left(\mathrm{PPh}_{3}\right)$. The vinylidene complex is also formed by the thermal isomerisation of the alkyne cluster, another example of the facile alkyne/vinylidene transformation on a cluster framework, or as one of the several products formed by direct hydrogenation of the acetylide cluster. The vinylidene cluster is structurally similar to the congeneric $\mathrm{Co}_{2} \mathrm{Fe}$ and $\mathrm{Co}_{2} \mathrm{Ru} \mu_{3}$-vinylidene clusters prepared by Vahrenkamp and coworkers [4] with the hydrocarbon moiety interacting in a distorted η^{2}-fashion with one of the less electron-rich metals present in the complex.

The acetylide cluster $\mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ reacted with hydride or sodium amalgam to form an anionic species which could be aurated using $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ or $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ to give mono-, di- or tri-gold adducts. The unusual $\mathrm{Au}-\mathrm{C}$ interaction present in the digold cluster $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4}-\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{2}$, best prepared from the reaction of the neutral acetylide cluster with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right] /[\mathrm{ppn}]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$, leads us to believe that the ' $\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ' unit may model an intermediate stage of addition of dihydrogen to the acetylide cluster.

Experimental

General experimental techniques were described in an earlier paper [16].
Starting materials. Literature methods were used to prepare $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ [17], $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right][17]$ and $\mathrm{Fe}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(\mathrm{M}=\mathrm{Rh}$, Ir) [1].
A. Reactions of $\mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{CO}_{8}\left(\mathrm{PPh}_{3}\right)\right.$
(a) With sodium amalgam. A solution of $1(163 \mathrm{mg}, 0.183 \mathrm{mmol})$ in THF (15 ml) was added to a freshly prepared sample of sodium amalgam (ca. 100 mg Na in 1.0 ml Hg) at $-64^{\circ} \mathrm{C}$ and stirred for 15 min . The dark red reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for a further 1 h . After standing for a period to allow the amalgam to settle, the solution was transferred by syringe to a Schlenk flask and filtered through Celite. The solution was then treated with $\mathrm{H}_{3} \mathrm{PO}_{4}$ (5 drops, excess) and stirred at $0^{\circ} \mathrm{C}$ for 10 min . The dark red solution was evaporated to dryness, the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-water ($25 / 10$) and filtered through phase-separating paper. The organic layer was evaporated to dryness and the residue was separated by preparative TLC (acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum, $7 / 1 / 12$) to give ten bands. Band 1 ($R_{\mathrm{f}} 0.67$, red-pink) was crystallised ($\mathrm{Et}_{2} \mathrm{O}$ /light petroleum) as red crystals of $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(2)(3 \mathrm{mg}, 2 \%)$, identified by spot TLC and comparison of its IR $\nu(\mathrm{CO})$ spectrum with that of a sample prepared as below. Band 2 ($R_{\mathrm{f}} 0.61$, orange-brown) crystallised ($\mathrm{Et}_{2} \mathrm{O} /$ light petroleum) to give dark red crystals of $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(3)(77 \mathrm{mg}, 47 \%)$, m.p. $>$ $150^{\circ} \mathrm{C}$ (dec.). [Found: C, 45.41; H, 2.56; M (mass spectrometry), 894.] $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{Fe}_{2} \mathrm{IrO}_{8} \mathrm{P}$ calc.: $\mathrm{C}, 45.71 ; \mathrm{H}, 2.48 \% ; M, 894$. IR (cyclohexane): $\nu(\mathrm{CO})$ $2076 \mathrm{w}, 2047 \mathrm{~s}, 2023 \mathrm{~m}, 2009 \mathrm{vs}, 1986 \mathrm{~m}, 1970 \mathrm{~m}, 1955 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $7.81[\mathrm{~d}, J(\mathrm{PH}) 5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}] ; 7.1-7.5(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) ;-23.48[\mathrm{~d}, J(\mathrm{PH}) 12 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Fe}-\mathrm{H}] .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left[\mathrm{CDCl}_{3}, \mathrm{Cr}(\mathrm{acac})_{3}\right]: \delta 112.5(\mathrm{~s}, \mathrm{HCCPh}) ; 126.5-133.4(\mathrm{~m}$, Ph); 152.8 ($\mathrm{s}, \mathrm{Ir}-\mathrm{CO}$); 171.2 (m, Ir-CO); 210.4, 212.1, $213.0(3 \times \mathrm{s}, \mathrm{Fe}-\mathrm{CO}$). FAB MS: $894,[M]^{+}, 19 ; 838,[M-2 C O]^{+}, 3 ; 810,[M-3 \mathrm{CO}]^{+}, 100 ; 782,[M-4 \mathrm{CO}]^{+}$, 33; 754, $[M-5 \mathrm{CO}]^{+}, 19 ; 726,[M-6 \mathrm{CO}]^{+}, 83 ; 698,[M-7 \mathrm{CO}]^{+}, 13 ; 670[M-$ $8 \mathrm{CO}]^{+}, 4$. The remaining eight bands contained only trace amounts and were not identified.
(b) With K-Selectride, $K\left[B H(C H M e E t)_{3}\right]$. A solution of $1(103 \mathrm{mg}, 0.116 \mathrm{mmol})$ in THF (20 ml) at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right](0.16 \mathrm{ml}$ of a 1.0 mol L^{-1} solution in THF, 0.16 mmol), and stirred for 60 min . The now darkened solution was warmed to ambient temperature and $\mathrm{H}_{3} \mathrm{PO}_{4}$ (3 drops, excess) was added. After stirring for a further 10 min , the solution was evaporated to dryness and the residue extracted with equal volumes of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The organic layer was separated by filtration through phase-separating paper and then
evaporated to dryness. The residue was separated by preparative TLC (acetone-light petroleum, $1 / 4$) giving twelve bands. Band $1\left(R_{\mathrm{f}} 0.92\right.$, red-pink) gave solid $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(2)(3 \mathrm{mg}, 3 \%)$, identified by spot TLC and its IR $\nu(\mathrm{CO})$ spectrum. Band $2\left(R_{\mathrm{f}} 0.86\right.$, red-brown) was crystallised $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ light petroleum) to give dark red crystals of $3(20 \mathrm{mg}, 19 \%)$, identified by its IR $\nu(\mathrm{CO})$, ${ }^{1} \mathrm{H}$ NMR and FAB mass spectra. Band 3 ($R_{\mathrm{f}} 0.42$, orange) was obtained as crystals ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ light petroleum) (2 mg) but was not identified. IR (cyclohexane): $\nu(\mathrm{CO})$ $2084 \mathrm{~m}, 2052 \mathrm{~s}, 2020 \mathrm{~m}, 2010 \mathrm{~s}, 1994 \mathrm{~m}, 1981 \mathrm{~m}, 1964 \mathrm{w} \mathrm{cm}^{-1}$.
(c) With dihydrogen. A solution of $1(48 \mathrm{mg}, 0.054 \mathrm{mmol})$ in cyclohexane (20 ml) was hydrogenated in an autoclave ($30 \mathrm{~atm}, 80^{\circ} \mathrm{C}, 7 \mathrm{~h}$). The resulting brown suspension was filtered, the filtrate evaporated to dryness and the residue separated by preparative TLC (acetone-light petroleum, $1 / 4$) to give eleven bands. Band 1 ($R_{\mathrm{f}} 0.97$, red) gave solid $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right) 2(1 \mathrm{mg}, 2 \%)$, identified by spot TLC and its IR $\mu(\mathrm{CO})$ spectrum. Bands 3 and 4 (R_{f} 's 0.75 and 0.68 , respectively) contained trace amounts and were not identified. Band 5 (R_{f} 0.61 , brown) was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane) to give unidentified brown needles (12 mg), m.p. $>150^{\circ} \mathrm{C}$ (dec.) [Found: C, 42.08; H, 2.46.] IR (cyclohexane): $\nu(\mathrm{CO})$ $2064 \mathrm{~m}, 2043 \mathrm{~m}, 2029 \mathrm{~s}, 2009 \mathrm{~s}, 1997 \mathrm{~m}, 1970 \mathrm{~m}, 1855 \mathrm{~m}, 1820 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-23.0[\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{MH}] ; 7.47(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$. Band 7 ($R_{\mathrm{f}} 0.50$, yellow) (1 mg). IR (cyclohexane): $\nu(\mathrm{CO}) 2053 \mathrm{~m}, 2004(\mathrm{sh}), 1999 \mathrm{~s}, 1981 \mathrm{w}, 1802 \mathrm{~m}, 1791 \mathrm{~m} \mathrm{~cm}^{-1}$. The remaining bands were present in trace amounts and were not identified.
(d) With sodium amalgam and $\left[O\left\{A u\left(P P h_{3}\right)\right\}_{3}\right]\left[B F_{4}\right]$. A solution of $1(55 \mathrm{mg}$, 0.062 mmol) in THF (10 ml) was added to a freshly prepared sample of sodium amalgam (ca. 100 mg Na in 1.0 ml Hg) and the mixture was stirred at ambient temperature for 1 h . The dark red solution was filtered through Celite, cooled to $0^{\circ} \mathrm{C}$ and $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right](92 \mathrm{mg}, 0.062 \mathrm{mmol})$ was added. The mixture was warmed to ambient temperature and stirred for 1 h . Evaporation and preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone-cyclohexane, $4 / 1 / 5$) gave ten bands. Band 1 ($R_{\mathrm{f}} 0.76$, red) was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ light petroleum $)$ to give dark red rosettes of $\mathrm{AuFe} 2 \mathrm{Ir}\left(\mu_{3}-\right.$ $\left.\eta^{2}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}(4)(20 \mathrm{mg}, 24 \%)$, m.p. $>176^{\circ} \mathrm{C}(\mathrm{dec}$.). [Found: C 45.82; $\mathrm{H}, 2.89 ; M$ (mass spectrometry) 1353. $\mathrm{C}_{52} \mathrm{H}_{36} \mathrm{AuFe}_{2} \mathrm{IrO}_{8} \mathrm{P}_{2}$ calc.: $\mathrm{C}, 46.24 ; \mathrm{H}$, $2.61 \% ; M$ 1352.] IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2040 \mathrm{~m}, 2008(\mathrm{sh}), 1999 \mathrm{vs}, 1985 \mathrm{~s}, 1959 \mathrm{~m}$, $1923 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.14-7.62(\mathrm{~m}, 35 \mathrm{H}, \mathrm{Ph}) ; 9.18[\mathrm{~d}, J(\mathrm{PH}) 13 \mathrm{~Hz}$, $\left.1 \mathrm{H}, H \mathrm{C}_{2} \mathrm{Ph}\right] .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 102.5(\mathrm{~s}, \mathrm{HCCPh}) ; 126.0-135.0(\mathrm{~m}, \mathrm{Ph})$; no other carbon resonances were observed. FAB MS: $1353,[M+\mathrm{H}]^{+}, 2 ; 1296$, $[M-2 \mathrm{CO}]^{+}, 9 ; 1268,[M-3 \mathrm{CO}]^{+}, 41 ; 1240,[M-4 \mathrm{CO}]^{+}, 39 ; 1212,[M-5 \mathrm{CO}]^{+}$, 33; 1184, $[M-6 \mathrm{CO}]^{+}, 81 ; 1156,[M-7 \mathrm{CO}]^{+}, 100 ; 1128,[M-8 \mathrm{CO}]^{+}, 7 ; 1079$, $\left[M-\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right]^{+}, 14 ; 894,\left[(M+\mathrm{H})-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 15 ; 721,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 60$; 459, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 46$. Band $5\left(R_{\mathrm{f}} 0.62\right.$, orange) was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ light petroleum) to give orange crystals of $3(14 \mathrm{mg}, 15 \%)$, identified by comparison of its IR $\nu(\mathrm{CO})$ and FAB mass spectra with those of an authentic sample (below). The remaining bands were present in trace amounts and were not identified.
(e) With $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ and $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[B F_{4}\right]$. A solution of 1 (50 $\mathrm{mg}, 0.056 \mathrm{mmol}$) in THF (10 ml) at $-64^{\circ} \mathrm{C}$ was treated with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ (0.1 ml of a $1.0 \mathrm{~mol} \mathrm{~L}{ }^{-1}$ solution in THF, 0.1 mmol). After 5 min the red-brown solution was warmed to ambient temperature and stirred for 35 min , after which the darkened solution was cooled to $-64^{\circ} \mathrm{C} .\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ (95 mg, 0.064 mmol) was added and the mixture warmed to ambient temperature. After stirring
for 30 min the solution was evaporated to dryness and the residue separated by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone-cyclohexane, $\left.6 / 1 / 4\right)$ to give eight bands. Bands 1,2 and 3 (R_{f} 's $0.96,0.93$ and 0.90 respectively) contained only trace amounts and were not identified. Band 4 ($R_{\mathrm{f}} 0.86$, black-brown) was further separated by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone-cyclohexane $\left.6 / 1 / 4\right)$ into two bands. Band 4 a ($R_{\mathrm{f}} 0.72$, orange) was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give orange crystals of 5 (4 $\mathrm{mg}, 4 \%$) which was identified by comparison of its IR $\nu(\mathrm{CO})$ and FAB mass spectra with those of an authentic sample. Band 4 b ($R_{\mathrm{f}} 0.67$, black) was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give black needles of $\mathrm{Au}_{3} \mathrm{Fe}_{2} \mathrm{Ir}\left(\mathrm{C}_{2} \mathrm{HPh}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{4} 624$ $\mathrm{mg}, 19 \%$), m.p. $>200^{\circ} \mathrm{C}$ (dec.). [Found: C, 45.43; H, 2.82; M (mass spectrometry), 2242. $\mathrm{C}_{87} \mathrm{H}_{66} \mathrm{Au}_{3} \mathrm{Fe}_{2} \mathrm{IrO}_{7} \mathrm{P}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calc.: C, $45.40 ; \mathrm{H}, 2.90 \%$; M, 2242. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2024 \mathrm{w}, 1988 \mathrm{~s}, 1962 \mathrm{~m}, 1933 \mathrm{~m}, 1918 \mathrm{w}, 1893 \mathrm{w} \mathrm{cm}{ }^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.31\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 7.05$ (br, CHPh); $7.00-7.54$ (m, Ph). FAB MS: 2242, $[M]^{+}, 0.4 ; 2214,[M-\mathrm{CO}]^{+}, 0.5 ; 2186[M-2 \mathrm{CO}]^{+}, 0.9 ; 2158,[M-3 \mathrm{CO}]^{+}, 0.9$; 2130, $[M-4 \mathrm{CO}]^{+}, 16 ; 2102[M-5 \mathrm{CO}]^{+}, 10 ; 2074,[M-6 \mathrm{CO}]^{+}, 2 ; 2048,[M-$ $7 \mathrm{CO}]^{+}, 0.6 ; 1896,\left[M-3 \mathrm{CO}-\mathrm{PPh}_{3}\right]^{+}, 6 ; 1868,\left[M-4 \mathrm{CO}-\mathrm{PPh}_{3}\right]^{+}, 5 ; 1840$, $\left[M-5 \mathrm{CO}-\mathrm{PPh}_{3}\right]^{+}, 21 ; 1812,\left[M-6 \mathrm{CO}-\mathrm{PPh}_{3}\right]^{+}, 18 ; 1377,\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}, 62$; 1115, $\left[\mathrm{Au}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 14 ; 721,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 100$.
(f) With sodium amalgam and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$. To a freshly prepared sample of sodium amalgam (ca. 180 mg Na in 1.0 ml of Hg) was added a solution of $1(82 \mathrm{mg}$, $0.092 \mathrm{mmol})$ in THF (10 ml) and the mixture was stirred for 20 min . The dark red solution was transferred via syringe to a Schlenk flask and filtered through Celite into a solution of $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(50 \mathrm{mg}, 0.101 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ and stirred for 1 h. Evaporation and preparative TLC (acetone-light petroleum, 1/4) afforded eight bands. The major band ($R_{\mathrm{f}} 0.69$, red-pink) was further separated by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone-cyclohexane, $6 / 1 / 4$) to give a major band ($R_{\mathrm{f}} 0.72$, redpink) which was crystallised ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane) to afford red crystals of $4(30 \mathrm{mg}$, 24%), identified by comparison of IR $\nu(\mathrm{CO})$ and ${ }^{1} \mathrm{H}$ NMR spectra with those of an authentic sample. The remaining bands were present in trace amounts and were not identified.
(g) With $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$. A solution of $1(50 \mathrm{mg}, 0.056$ $\mathrm{mmol})$ in THF (10 ml) was treated with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]\left(0.08 \mathrm{ml}\right.$ of $1 \mathrm{~mol} \mathrm{~L}^{-1}$ solution in THF, 0.08 mmol) and stirred for 1 h at ambient temperature. The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(40 \mathrm{mg}, 0.081 \mathrm{mmol})$ was added followed by a gradual warming to ambient temperature. After stirring for 1 h , the mixture was evaporated to dryness and the residue separated by preparative TLC (acetone-light petroleum, $1 / 3$) to give eleven bands. Band 1 ($R_{f} 0.64$, red-brown) gave solid 1 ($10 \mathrm{mg}, 20 \%$); Band 3 ($R_{\mathrm{f}} 0.53$, red-pink) gave solid 4 ($9 \mathrm{mg}, 15 \%$); Band 7 ($R_{\mathrm{f}} 0.38$, orange) gave solid 5 ($15 \mathrm{mg}, 19 \%$); Band 8 ($R_{\mathrm{f}} 0.32$, dark red-black) gave solid $6(4 \mathrm{mg}, 4 \%)$. These compounds were identified by comparison of their IR $\nu(\mathrm{CO})$ spectra and spot TLC behaviour with those of authentic samples. The remaining compounds were present in trace amounts and were not identified.
(h) With $\left[O\left\{A u\left(P P h_{3}\right)\right\}_{3}\right]\left[B F_{4}\right]$. A solution of $1(31 \mathrm{mg}, 0.035 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was treated with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right](51 \mathrm{mg}, 0.035 \mathrm{mmol})$ and the resulting suspension stirred for 24 h . The dark orange solution was evaporated to dryness and the residue separated by preparative TLC (acetone-light petroleum, $3.5 / 10)$ to give five bands. Bands 1 and $2\left(R_{\mathrm{f}} 0.88\right.$ and 0.85 , respectively) contained trace amounts and were not identified. Band $3\left(R_{\mathrm{f}} 0.45\right.$, orange (was crystallised
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give orange crystals of $5(15 \mathrm{mg}, 24 \%)$, identified by comparison of its IR $\nu(\mathrm{CO})$ and FAB mass spectra with those of an authentic sample. The remaining compounds were present in trace amounts and were not identified.

B. Syntheses of $A u_{2} \mathrm{Fe}_{2} \mathrm{M}\left(\mu_{4}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3}(M=I r, \mathrm{Rh})$

(a) $M=I r . \quad$ A solution of $1(54 \mathrm{mg}, 0.061 \mathrm{mmol})$ in THF (20 ml) at ambient temperature was treated successively with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ (90 mg, 0.061 $\mathrm{mmol})$ and $[\mathrm{ppn}]\left[\mathrm{Co}(\mathrm{CO})_{4}\right](45 \mathrm{mg}, 0.063 \mathrm{mmol})$. After ca. 1 min the red-brown mixture cleared to an orange solution. Evaporation and preparative TLC (acetonelight petroleum, $3.5 / 10$) afforded two bands. Band 1 ($R_{\mathrm{f}} 0.53$, colourless) gave solid $\mathrm{AuCo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)(35 \mathrm{mg}, 91 \%)$, identified by comparison of its IR $\nu(\mathrm{CO})$ spectrum with that of an authentic sample [18]. Band 2 ($R_{\mathrm{f}} 0.17$, orange) was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give orange crystals of $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4}-\eta^{2}-\mathrm{C}_{2} \mathrm{Ph}\right)$ -$(\mathrm{CO})_{7}-\left(\mathrm{PPh}_{3}\right)_{3} 5$ ($90 \mathrm{mg}, 83 \%$), m.p. $>150^{\circ} \mathrm{C}$ (dec.). [Found: C, 45.97; H, 2.74; M (mass spectrometry), 1784. $\mathrm{C}_{69} \mathrm{H}_{50} \mathrm{Au}_{2} \mathrm{Fe}_{2} \mathrm{IrO}_{7} \mathrm{P}_{3}$ calc.: $\mathrm{C}, 46.51 ; \mathrm{H}, 2.83 \%$; M, 1783.] IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2018 \mathrm{~m}, 1978 \mathrm{~m}, 1962 \mathrm{~m}, 1885 \mathrm{w}, 1876(\mathrm{sh}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left[\mathrm{CDCl}_{3}, \mathrm{Cr}(\mathrm{acac})_{3}\right]: \delta 126.0-134.0$ (m, Ph); 215.2 (m, Fe-CO). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta 30.6\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{PPh}_{3}\right) ; 42.8$ [s(br), Au-PPh ${ }_{3}$; 47.6 [s(br), Au- PPh_{3}]. FAB MS: 1784, $[\mathrm{M}+\mathrm{H}]^{+}, 6 ; 1699$, $[M-3 \mathrm{CO}]^{+}, 50 ; 1671,[M-4 \mathrm{CO}]^{+}, 2 ; 1643,[M-5 \mathrm{CO}]^{+}, 47 ; 1615,[M-6 \mathrm{CO}]^{+}$, 74; $1587[M-7 \mathrm{CO}]^{+}, 3 ; 1324,\left[M-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 5 ; 919,\left[\left\{\mathrm{Au}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right\}+\mathrm{H}\right]^{+}$, 12; 721, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 100 ; 459,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 53$.
(b) $M=R h . \quad$ A solution of $\mathrm{Fe}_{2} \mathrm{Rh}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(40 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (10 ml) at $20^{\circ} \mathrm{C}$ was treated successively with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right]$ (75 mg , $0.051 \mathrm{mmol})$ and $[\mathrm{ppn}]\left[\mathrm{Co}(\mathrm{CO})_{4}\right](36 \mathrm{mg}, 0.051 \mathrm{mmol})$. The initial dark red suspension cleared to a dark brown-black solution. Evaporation and preparative TLC (acetone-light petroleum, $1 / 2.5$) afforded one major band ($R_{\mathrm{f}} 0.30$, black) which was crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give black crystals of $\mathrm{Au}_{2} \mathrm{Fe}_{2} \mathrm{Rh}\left(\mu_{4}-\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3}(8)(68 \mathrm{mg}, 80 \%)$, m.p. $>200^{\circ} \mathrm{C}$ (dec.). [Found: C, $48.84 ; \mathrm{H}$, 2.94; M (mass spectrometry), 1964; $\mathrm{C}_{69} \mathrm{H}_{50} \mathrm{Au}_{2} \mathrm{Fe}_{2} \mathrm{O}_{7} \mathrm{P}_{3} \mathrm{Rh}$ calc.: $\mathrm{C}, 48.16 ; \mathrm{H}$, 2.98\%; M 1962.] IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2008 \mathrm{~s}, 1981 \mathrm{~m}, 1970 \mathrm{~s}, 1954 \mathrm{~s}, 1904 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.32(\mathrm{~m}, \mathrm{Ph}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta 40.8$ [s(br), Au- PPh_{3}]; 47.8 [s(br), $\mathrm{Au}^{2}-\mathrm{PPh}_{3}$]; 52.6 [d, $J(\mathrm{RhP}) 141 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{PPh}_{3}$]. FAB MS: $1694,[M+$ $2 \mathrm{H}]^{+}, 4 ; 1609,[M-3 \mathrm{CO}]^{+}, 17 ; 1524,[M-6 \mathrm{CO}]^{+}, 28 ; 1496,[M-7 \mathrm{CO}]^{+}, 13$; 1234, $\left[M-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 12 ; 721,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 100 ; 459,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 91$.

C. Hydrogenation of $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{CCHPh}\right)\left(\mathrm{CO}_{8}\left(\mathrm{PPh}_{3}\right)\right.$ (2) and $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-H)\left(\mu_{3^{-}}\right.$ $\left.n^{2}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (3)

Hydrogenation of 2 , under the same conditions as above resulted only in decomposition while the hydrogenation of $3(20 \mathrm{mg}, 0.022 \mathrm{~mol})$ as above resuited in many bands (preparative TLC). One of the these was the brown complex obtained in $\mathrm{A}(\mathrm{c})$ above (5 mg) (spot TLC, IR $\nu(\mathrm{CO})$ spectrum).

D. Pyrolysis of $\mathrm{Fe}_{2} \mathrm{Ir}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)$ (3)

A solution of $3(42 \mathrm{mg}, 0.047 \mathrm{~mol})$ in toluene (15 ml) was heated at reflux for 1.5 h, after which time the reaction was adjudged complete (TLC). The burgundy coloured solution was evaporated to dryness and the residue separated by preparative TLC (acetone-light petroleum, $1 / 4$) to give one major band ($R_{\mathrm{f}} 0.78$, red).

Crystallisation (hexane) gave dark red crystals of $\mathrm{Fe}_{2} \operatorname{Ir}(\mu-\mathrm{H})\left(\eta_{3}-\eta^{2}-\mathrm{CCHPh}\right)(\mathrm{CO})_{8^{-}}$ $\left(\mathrm{PPh}_{3}\right) 2(35 \mathrm{mg}, 83 \%)$, m.p. $>200^{\circ} \mathrm{C}$ (dec.). [Found: C, 44.99; H, 2.53; M (mass spectrometry), 894. $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{Fe}_{2} \mathrm{IrO}_{8} \mathrm{P}$ calc.: C , $45.71 ; \mathrm{H}, 2.48 \%$; M, 894.] IR (cyclohexane): $\nu(\mathrm{CO}) 2072 \mathrm{~m}, 2045 \mathrm{vs}, 2022 \mathrm{~s}, 2009 \mathrm{vs}, 1986 \mathrm{~s}, 1971 \mathrm{~m}, 1961 \mathrm{w}, 1954 \mathrm{w}$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-17.959[\mathrm{~d}, J(\mathrm{PH}) 13 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{FeH}] ;-17.962$ [d, $J(\mathrm{PH}) 13 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{FeH}] ; 6.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CC} H \mathrm{Ph}) ; 7.35(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ [$\mathrm{CDCl}_{3}, \mathrm{Cr}(\mathrm{acac})_{3}$]: $\delta 101.7$ (s, CCHPh); 126.0-134.0 (m, Ph); 145.5 (s, CCHPh); 170.2, 176.1 (s, $2 \times \mathrm{Ir}-\mathrm{CO}$); 209.8, 212.7, 214.0, 247.8 (m, Fe-CO). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta 5.1\left(\mathrm{~s}, \mathrm{PPh}_{3}\right) . \mathrm{FAB}$ MS: $894,[M]^{+}, 5 ; 866,[M-\mathrm{CO}]^{+}, 5 ; 810$, $[M-3 \mathrm{CO}]^{+}, 89 ; 782,[M-4 \mathrm{CO}]^{+}, 33 ; 754,[M-5 \mathrm{CO}]^{+}, 22 ; 726,[M-6 \mathrm{CO}]^{+}$, $100 ; 698,[M-7 \mathrm{CO}]^{+}, 70 ; 670,[M-8 \mathrm{CO}]^{+}, 9$.

Crystallography

Intensity data for $\mathbf{2}$ and 5 were measured at room temperature on an Enraf-Nonius CAD4F diffractometer fitted with graphite-monochromated Mo- K_{α} radiation, $\lambda=0.7107 \AA$, employing the $\omega-2 \theta$ scan technique. The data were corrected for Lorentz and polarisation effects and for absorption with the use of an analytical procedure [19]. Crystal data for each complex are listed in Table 3.

The structure of 2 was solved by interpretation of the Patterson synthesis and that of 5 by direct methods [20]; both were refined by full-matrix least-squares

Table 3
Crystal and refinement details for complexes 2 and 5

Complex	$\mathbf{2}$	$\mathbf{5}$
Formula	$\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{Fe}_{2} \mathrm{IrO}_{8} \mathrm{P} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{69} \mathrm{H}_{50} \mathrm{Au}_{2} \mathrm{Fe}_{2} \mathrm{IrO}_{7} \mathrm{P}_{3} \cdot \mathrm{EtOH}$
M.W.	978.3	1828.0
Crystal system	triclinic	monoclinic
Space group	$P \overline{1}$	$C c$
a, \AA	$13.155(4)$	$12.956(1)$
b, \AA	$15.039(3)$	$26.604(4)$
c, \AA	$11.354(2)$	$19.190(2)$
α, deg	$111.69(2)$	90
β, deg	$115.27(2)$	$97.14(1)$
γ, deg	$95.25(2)$	90
U, \AA^{3}	1802.5	6563.1
Z	2	4
D_{c}, gcm	1.850	
$F(000)$	1.803	3511
μ, cm $^{-1}$	952	69.87
$\mathrm{Transmission} \mathrm{factors}$,$\mathrm{max} / min _{\boldsymbol{A}}$ limits, deg	46.64	$0.340,0.241$
$\mathrm{~N}_{\text {meas }}$	$0.381,0.191$	$1.0-22.5$
$\mathrm{~N}_{\text {unique }}$	$1.0-22.5$	4508
$\mathrm{~N}_{\mathrm{o}}, I \geqslant 2.5 \sigma(I)$	5674	4508
R	5674	3473
k	5261	0.048
g	0.035	1.0
R_{w}	0.56	0.006

Table 4
Fractional atomic coordinates ($\times 10^{5}$ for $\mathrm{Fe}, \mathrm{Ir} ; \times 10^{4}$ for remaining atoms) for $\mathrm{Fe}_{2} \operatorname{lr}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{CCHPh}\right)$ $(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2)

Atom	x	y	z
Ir	30536(1)	34729(1)	8578(2)
$\mathrm{Fe}(1)$	7403(6)	26908(5)	- 1620(8)
$\mathrm{Fe}(2)$	18954(6)	44405(5)	20722(8)
$\mathrm{P}(1)$	3811(1)	2101(1)	329(1)
C(1)	4444(5)	4317(4)	2635(7)
O(1)	5316(4)	4833(3)	3681(5)
C(2)	3367(5)	4083(4)	-237(7)
O(2)	3526(5)	4471(4)	-856(6)
C(3)	-145(5)	2874(5)	-1753(8)
$\mathrm{O}(3)$	-722(5)	2967(5)	- 2757(6)
C(4)	-349(5)	2769(4)	363(6)
$\mathrm{O}(4)$	-1115(4)	2779(3)	591(5)
C(5)	412(5)	1365(5)	-923(8)
$\mathrm{O}(5)$	115(5)	508(3)	- 1403(9)
C(6)	3053(5)	5519(4)	3587(7)
$\mathrm{O}(6)$	3793(5)	6250(3)	4578(6)
C(7)	1500(5)	4951(4)	794(7)
$\mathrm{O}(7)$	1294(4)	5282(3)	2(5)
$\mathrm{C}(8)$	875(5)	4747(4)	2708(6)
$\mathrm{O}(8)$	260(4)	4964(3)	3165(6)
$\mathrm{C}(9)$	2089(4)	3070(3)	1680(6)
C(10)	2380(4)	3411(3)	3148(5)
$\mathrm{C}(11)$	1642(3)	3074(2)	3689(3)
$\mathrm{C}(12)$	866(3)	2107(2)	2916(3)
$\mathrm{C}(13)$	242(3)	1793(2)	3495(3)
$\mathrm{C}(14)$	394(3)	2446(2)	4845(3)
$\mathrm{C}(15)$	1170(3)	3413(2)	5618(3)
C(16)	1793(3)	3727(2)	5039(3)
C(17)	5421(3)	2505(3)	1332(4)
$\mathrm{C}(18)$	6000(3)	3246(3)	1183(4)
$\mathrm{C}(19)$	7227(3)	3607(3)	1968(4)
C(20)	7874(3)	3226(3)	2903(4)
C(21)	7295(3)	2485(3)	3052(4)
C(22)	6069(3)	2124(3)	22060(4)
C(23)	3386(3)	1172(2)	840(3)
C(24)	3549(3)	1502(2)	2246(3)
C(25)	3231(3)	814(2)	2673(3)
C(26)	2751(3)	-205(2)	1694(3)
C(27)	2588(3)	-535(2)	287(3)
C(28)	2906(3)	154(2)	-140(3)
C(29)	3450(3)	1356(3)	-1565(4)
C(30)	4174(3)	791(3)	-1853(4)
C(31)	3848(3)	147(3)	- 3291(4)
C(32)	2797(3)	69(3)	-4442(4)
C(33)	2073(3)	634(3)	-4154(4)
C(34)	2399(3)	1278(3)	-2716(4)
C(35)	3924(10)	7376(8)	2218(12)
$\mathrm{Cl}(1)$	5214(4)	6961(2)	2843(5)
$\mathrm{Cl}(2)$	3718(4)	8087(3)	3508(4)

Table 5
Fractional atomic coordinates ($\times 10^{5}$ for $\mathrm{Au}, \mathrm{Ir} ; \times 10^{4}$ for remaining atoms) for $\mathrm{Au}_{2} \mathrm{Fe}_{2} \operatorname{Ir}\left(\mu_{4^{-}}\right.$ $\left.\mathrm{C}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)_{3} \cdot \mathrm{EtOH}(5)$

Atom	x	y	z
$\mathrm{Au}(1)$	22385(10)	64626(3)	29031(6)
Au(2)	727(1)	66169(3)	38390(7)
$\operatorname{Ir}(1)$	24600(-)	71966(3)	38300(-)
$\mathrm{Fe}(1)$	1271(3)	7805(1)	2926(2)
$\mathrm{Fe}(2)$	1904(3)	8165(1)	4106(2)
$\mathrm{P}(1)$	3113(5)	6805(2)	4851(3)
$\mathrm{P}(2)$	-532(5)	6045(2)	3973(3)
$\mathrm{P}(3)$	2282(5)	5955(2)	1957(3)
C(1)	3733(22)	7156(10)	3495(15)
O(1)	4540(16)	7182(7)	3299(12)
C(2)	498(18)	7401(9)	2337(13)
$\mathrm{O}(2)$	-1(17)	$7139(8)$	1961(12)
C(3)	2371(2)	7816(9)	2514(14)
O(3)	3131(17)	7860 (8)	2212(12)
C(4)	759(22)	8368(11)	2551(16)
$\mathrm{O}(4)$	429(20)	8742(10)	2292(15)
C(5)	1569(23)	8770(13)	4003(18)
O(5)	1276(23)	9216(12)	3946(17)
C(6)	2149(24)	8181(13)	5060(18)
O(6)	2315(17)	8242(9)	5638(13)
C(7)	3215(19)	8244(10)	3944(14)
$\mathrm{O}(7)$	4013(17)	8323(8)	3821(12)
C(8)	1096(18)	$7496(8)$	3896(11)
C(9)	431(18)	7883(8)	3812(10)
$\mathrm{C}(10)$	-1012(10)	8481(5)	3852(8)
$\mathrm{C}(11)$	- 2068(10)	8576(5)	3871(8)
C(12)	-2762(10)	8176(5)	3885(8)
C(13)	-2401(10)	7682(5)	3879(8)
C(14)	-1346(10)	7588(5)	3860(8)
C(15)	-651(10)	7988(5)	3847(8)
$\mathrm{C}(16)$	3190(9)	6940(5)	6300(7)
$\mathrm{C}(17)$	2761(9)	7037(5)	6918(7)
$\mathrm{C}(18)$	1699(9)	7137(5)	6891(7)
C(19)	1068(9)	7139(5)	6247(7)
C(20)	1497(9)	7041(5)	5630(7)
C(21)	2558(9)	6941(5)	5656(7)
$\mathrm{C}(22)$	5238(11)	6562(5)	5357(8)
C(23)	6275(11)	6696(5)	5555(8)
C(24)	6574(11)	7199(5)	5544(8)
C(25)	5836(11)	7569(5)	5335(8)
C(26)	4800(11)	7435(5)	5137(8)
C(27)	4501(11)	6932(5)	5149(8)
C(28)	3703(11)	5887(5)	4328(7)
C(29)	3739(11)	5364(5)	4300(7)
C(30)	3183(11)	5077(5)	4735(7)
C(31)	2592(11)	5314(5)	5198(7)
C(32)	2556(11)	5838(5)	5227(7)
C(33)	3112(11)	6124(5)	4792(7)
C(34)	-1830(10)	6424(5)	2853(8)
C(35)	-2786(10)	6525(5)	2458(8)
C(36)	- 3709(10)	6418(5)	2731(8)
$\mathrm{C}(37)$	-3678(10)	6208(5)	3400(8)
C(38)	- 2723(10)	6107(5)	3795(8)

Table 5 (continued)

Atom	x	y	z
C(39)	-1799(10)	6215(5)	3522(8)
C(40)	-914(11)	6393(5)	5250(8)
$\mathrm{C}(41)$	- 1048(11)	6356(5)	5958(8)
$\mathrm{C}(42)$	-981(11)	5889(5)	6291(8)
$\mathrm{C}(43)$	-778(11)	5459(5)	5916(8)
$\mathrm{C}(44)$	-644(11)	5495(5)	5207(8)
C(45)	-712(11)	5963(5)	4874(8)
$\mathrm{C}(46)$	763(10)	5272(5)	3636(7)
$\mathrm{C}(47)$	992(10)	4786(5)	3431(7)
$\mathrm{C}(48)$	190(10)	4442(5)	3253(7)
$\mathrm{C}(49)$	-841(10)	4584(5)	3280(7)
C(50)	-1070(10)	5070(5)	3485(7)
C(51)	-268(10)	5414(5)	3664(7)
C(52)	129(11)	5928(5)	1646(7)
C(53)	-804(11)	5923(5)	1197(7)
$\mathrm{C}(54)$	-792(11)	5913(5)	471(7)
C(55)	154(11)	5909(5)	194(7)
C(56)	1088(11)	5915(5)	643(7)
C(57)	1075(11)	5924(5)	1369(7)
C(58)	3226(12)	6716(6)	1344(9)
C(59)	3926(12)	6933(6)	936(9)
C(60)	4626(12)	6631(6)	630(9)
C(61)	4626(12)	6112(6)	732(9)
C(62)	3926(12)	5894(6)	1140(9)
C(63)	3226(12)	6196(6)	1446(9)
C(64)	3618(11)	5183(6)	2467(8)
C(65)	3902(11)	4682(6)	2589(8)
C(66)	3204(11)	4299(6)	2365(8)
C(67)	2222(11)	4416(6)	2019(8)
C(68)	1939(11)	4918(6)	1897(8)
C(69)	2637(11)	5301(6)	2121(8)
$\mathrm{O}(108)$	6362(28)	4892(16)	465(21)
C(100)	6325(45)	4811(23)	1201(19)
$\mathrm{C}(101)$	6608(25)	5128(14)	1862(18)

procedures based on F [20]. Phenyl rings were refined as hexagonal rigid groups with individual isotropic thermal parameters in both refinements. For 2, non-phenyl, non-hydrogen atoms were refined with anisotropic thermal parameters, while for 5 , the $\mathrm{Au}, \mathrm{Fe}, \mathrm{Ir}, \mathrm{P}, \mathrm{C}(8)$ and $\mathrm{C}(9)$ atoms were refined with anisotropic thermal parameters. For both models a weighting scheme of the form $w=k /\left[\sigma^{2}(F)+\right.$ $g(F)^{2}$] was included. At this stage of the refinement of 5 , several residual electron density peaks associated with the metal atom positions were noted. These were modelled successfully with 2% site occupancy factors, there being two residual peaks associated with each metal atom. In addition, a disordered ethanol molecule of crystallisation was located and refined with constrained $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths of 1.53 and $1.45 \AA$, respectively. For 2 a solvent dichloromethane molecule of crystallization was included. Phenyl hydrogen atoms were included in the model at their calculated positions with a common isotropic thermal parameter. The inclusion of Friedel pairs in the data set enabled the determination of the absolute
configuration of the structure of 5 (R_{g} values 0.061 and 0.071 , respectively for either hand [19]); the $C 2 / c$ space group for this compound is precluded by the lack of molecular symmetry in the complex.

Scattering factors for neutral Au, Fe and Ir (corrected for f and $f^{\prime \prime}$) were from ref. 21 while those for the remaining atoms were as incorporated in the shelx 76 programme [19]. Final refinement details are listed in Table 3, fractional atomic coordinates are given in Tables 4 and 5 and the numbering schemes employed are shown in Figs. 1 and 2 which were drawn with pluto [22]. All positional parameters (including disordered metal positions), thermal parameters, bond distances and angles and listings of the observed and calculated structure factors are available from the authors (ERTT).

References

1 Part LXVI: M.I. Bruce, G.A. Koutsantonis and E.R.T. Tiekink, J. Organomet. Chem., 407 (1991) 391.
2 M.I. Bruce, P.E. Corbin, P.A. Humphrey, G.A. Koutsantonis, M.J. Liddell and E.R.T. Tiekink, J. Chem. Soc., Chem. Commun., (1990) 674.
3 R. Della Pergola, L. Garlaschelli, F. Demartin, M. Manassero, N. Masciocchi and M. Sansoni, J. Chem. Soc., Dalton. Trans., (1990) 127.
4 E. Roland, W. Bernhardt and H. Vahrenkamp, Chem. Ber., 118 (1985) 2858.
5 J. Silvestre and R. Hoffmann, Helv. Chim. Acta, 68 (1985) 1461.
6 (a) M.I. Bruce and B.K. Nicholson, J. Chem. Soc., Dalton Trans., (1983) 2385; (b) M.I. Bruce and B. K. Nicholson, J. Organomet. Chem., 250 (1983) 627.

7 P. Braunstein and J. Rosé, Gold Bull., 18 (1985) 1.
8 P. Ewing and L.J. Farrugia, Organometallics, 8 (1989) 1246.
9 (a) V.G. Andrianov, Yu T. Struchkov and E.R. Rossinskaya, J. Chem. Soc., Chem. Commun, (1973) 338; (b) T.V. Baukova, Yu.L. Slovokhotov and Yu.T. Struchkov, J. Organomet. Chem., 221 (1981) 375.

10 M.R. Awang, G.A. Carriedo, J.A.K. Howard, K.A. Mead, I. Moore, C.M. Nunn and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1983) 964; G.A. Carriedo, J.A.K. Howard, F.G.A. Stone and M.J. Went, J. Chem. Soc., Dalton Trans., (1984) 2545.
11 A.D. Horton, M.J. Mays and M. McPartin, J. Chem. Soc., Chem. Commun., (1987) 424.
12 M.I. Bruce and P.A. Ilumphrey, in preparation.
13 D.G. Evans and D.M.P. Mingos, J. Organomet. Chem., 232 (1982) 171.
14 M.I. Bruce and B.K. Nicholson, Organometallics, 3 (1984) 101.
15 I.D. Salter, Adv. Organomet. Chem., 29 (1989) 249.
16 M.I. Bruce, M.L. Williams, B.W. Skelton and A.H. White, J. Organomet. Chem., 369 (1989) 339.
17 M.I. Bruce, B.K. Nicholson and O. bin Shawkataly, Inorg. Synth., 26 (1989) 324.
18 C.E. Coffey, J. Lewis and R.S. Nyholm, J. Chem. Soc., (1964) 1741.
19 G.M. Sheldrick, SHELX76 -- Programme for Crystal Structure Determination, University of Cambridge, 1976.

20 G.M. Sheldrick, Shelxs86-Programme for the Automatic Solution of Crystal Structures, University of Göttingen, 1986.
21 J.A. Ibers and W.C. Hamilton, International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974.
22 W.D.S. Motherwell, Pluto - Plotting Programme for Molecular Structures, University of Cambridge, 1978.

[^0]: * For Part LXVI see ref. 1.

